Escape velocity

There is currently lot of debate on how and when we lift restrictions, and the risks of this. There are several unknowns that may affect the outcome. I have extended the model in a couple of simple ways, firstly by including a vaccination effect which both immunises people, and substantially reduces the fatality rate of those who do get ill, and also by including a loss of immunity over time which is potentially important for longer simulations. The magnitudes of these effects seem highly uncertain, I’ve just made what seems like plausible guesstimates. I use a vaccination rate of 0.5% per day which is probably in the right ballpark though my implementation is extremely simplistic (NB this is the rate at which people move from the vulnerable to the immune category, so it directly accounts for the imperfect performance of the vaccine itself). As well as this, I’m assuming the fatality rate for those infected drops down to 0.3% as vaccination progresses through the most vulnerable groups, since we’ve heard so many good things about vaccination preventing serious illness even in those who do get ill. This value must also account for the proportion of victims that have not been vaccinated at all, so it’s really a bit of a guess but the right answer has to be significantly lower than the original fatality rate. The loss of immunity in this model occurs on a 1 year time scale, which in practice due to model structure means 1/365 = 0.27% of the immune population return to the vulnerable state each day. I don’t claim these numbers are correct, I merely hope that they are not wrong by a factor of more than about 2. In the long term in the absence of illness, the balance between vaccination and loss of immunity loss would lead to about 1/3rd of the population being vulnerable and 2/3rds being immune at any given time. This is just about enough to permanently suppress the disease (assuming R0=3), or at least keep it at a very low level.

The model simulates the historical trajectory rather well and also matches the ONS and REACT data sets, as I’ve shown previously, so I think it’s broadly reasonable. The recent announcements amount to an opening of schools on the 8th March, and then a subsequent reopening of wider society over the following weeks and months. In the simulations I’m about to present, I’m testing the proposition that we can open up society back to a near-normal situation more quickly. So after bumping the R number up on the 8th March I then increase it again more substantially, putting the underlying R0 number up to 2.5 in the ensemble mean, close to (but still lower than) the value it took at the start of last year, with the intention being to simulate a return to near-normal conditions but with the assumption that some people will still tend to be a bit on the cautious side. So this is a much more ambitious plan than the Govt is aiming for. I’m really just having a look to see what the model does under this fairly severe test. Here is the graph of case numbers when I bump the R number up at the end of April:

And here is the equivalent for deaths, which also shows how the R number rises:

So there is another wave of sorts, but not a terrible one compared to what we’ve seen. In many simulations the death toll does not go over 100 per day though it does go on a long time. Sorry for the messy annotations on the plots, I can’t be bothered adjusting the text position as the run length changes.

If we bring the opening forward to the end of March, it’s significantly worse, due to lower vaccination coverage at that point:

Here the daily deaths goes well over 100 for most simulations and can reach 1000 in the worse cases. On the other hand, if we put off the opening up for another couple of months to the end of July, the picture is very much better, both for cases:

and deaths:

While there are still a few ensemble members generating 100 deaths per day, the median is down at 1, implying a substantial probability that the disease is basically suppressed at that point.

I have to emphasise the large number of simplifications and guesstimates in this modelling. It does however suggest that an over-rapid opening is a significant risk and there are likely benefits to hanging on a bit longer than some might like in order that more people can be vaccinated. My results seems broadly in line with the more sophisticated modelling that was in the media a few days ago. To be honest it’s not far from what you would get out of a back-of-the-envelope calculation based on numbers that are thought to be immune vs vulnerable and the R0 number you expect to arise from social mixing, but for better or worse a full model calculation is probably a bit more convincing.

While the Govt plan seems broadly reasonable to me, there are still substantial uncertainties in how things will play out and it is vitally important that the govt should pay attention to the data and be prepared to shift the proposed dates in the light of evidence that accrues over the coming weeks. Unfortunately history suggests this behaviour is unlikely to occur, but we can live in hope.